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Recently, a,/3-unsaturated acyliron complexes have emerged 
as valuable synthetic intermediates.1 They undergo reactions such 
as Michael addition of nucleophiles2 and Lewis acid catalyzed 
Diels-Alder reactions3 readily. Also, they have seen recent ap­
plication toward stereoselective synthesis.1'3b'c As part of a study 
to probe Lewis acid catalyzed reactions of acryloyliron complexes 
1 with olefin and diene substrates,33 we recently initiated a study 
of the reactions of 1 with allylstannanes. As shown in Scheme 
I, this process catalyzed by aluminum chloride does not give the 
expected 5-hexenoyl species 44 but provides the unexpected 
five-membered ring adduct 3. We herein discuss preliminary 
results from studies of this remarkable reaction which potentially 
serves as a novel and useful method for cyclopentanoid synthesis. 

Allyltributyltin reacts with acryloyliron complex 1 at -26 0C 
in the presence of 1 equiv of aluminum chloride to give the cy­
clopentanoid compound 3 in 42% yield. This appears to be a 
general reaction for five-membered ring formation as is evident 
from the examples provided in Table I. In two cases, the 
open-chain product analagous to compound 4 is observed (entries 
8, 14). In all cases, only one stereoisomer is obtained as determined 
by 1H NMR and 13C NMR spectroscopy. Cis stereochemistry 
has been assigned to the reaction products based upon analysis 
of the 13C-119Sn coupling constants of selected compounds.8 

Optimum yields were obtained using freshly sublimed aluminum 
chloride as catalyst. Other catalysts were less effective for the 
five-membered ring-forming reaction. The acryloyl complex 1 
is apparently unstable under the reaction conditions and decom­
position competes with cycloaddition. This accounts for less than 
satisfactory mass balance seen in some cases. 

The mechanism we propose for this cycloaddition is outlined 
in Scheme I. First the aluminum chloride complexes with the 
acyliron giving the carbene complex 2.3a The allylstannane then 
attacks the electrophilic carbene complex at C-2 giving the in­
termediate tin-stabilized carbocation 5. This carbocation is sta­
bilized by hyperconjugative interaction with the tributyltin group.9 

In the extreme, this interaction can be expressed by the nonclassical 
resonance form 5B.10 In 5B there is significant electrophilic 
character at C-4 and C-5. Attack by the enolate at C-5 gives the 
five-membered ring compound 3. Normally carbocations such 
as 5 destannylate to give olefins.4'11 In this system, the favored 
pathway is cyclization. Here, iron donates significant electron 
density to the enolate in 5, making it more reactive and making 
ring closure faster than with simple enolates.12 The reaction 
efficiency also depends upon substituents at tin. The electron-
donating alkyl groups provide better yields and faster reactions 
than the inductively electron-withdrawing phenyl groups. 

This type of process has been observed in reaction of ij'-allyl 
transition-metal compounds with enones.13 However, allenyl-
silanes are the only nontransition-metal systems which undergo 

Table I. Reaction of a,0-Unsaturated Acylirons with Allystannanes 

entry 

1 
2 
3 
4 
5 
6 

7 

Ri 
R, 
Ri 
R, 
Ri 
R, 

R. 

acyliron 

R2 = H 
R2 = H 
R2 = H 
R2 = H 
R2 = H 
R2 = H 

R2 = H 

R2 ' 

1 R 3 s / \ , S n < R 4 > 3 / A I C I 3 

Y CH2Cl2 
O 

F p - Fe(CO)2Cp 

allylstannane 

allyltributyltin 
allyltributyltin 
allyltrimethyltin 
allyltriphenyltin 
//•ans-crotyltributyltin 
rz-aw-cinnamyltributyltin 

cyclopent-2-enyltributyltin 

catalyst 

EtAlCl2 

AlCl3 

AlCl3 

AlCl3 

AlCl3 

AlCl3 

AlCl3 

time/temp, c 

0.5 h/0 
0.5 h/-26 
1.5 h/0 
24 h/25 
1 h/0-25 
2 h/25 

1 h/-78 

A ° 

C product 

A 
A 
A 
A 
A 
A 

R,, R2, R3 = H; R4 = «-Bu 
Ri, R2, R3 = H; R4 = /z-Bu 
R,, R2, R3 = H; R4 = Me 
R,, R2, R3 = H; R4 = Ph 
R„ R2 = H; R3 = Me; R4 = 
R1, R2 = H; R3 = Ph; R4 = 
B u 3 S n ^ 

K-Bu 
n-Bu 

yield,"'6 % 

40 
4 26.15 

27 
8(15) 

52 (56) 
34 (45) 

27 (4O)7 

8 Ri, R2 = H 

9 R, = H, R2 = CH3 
10 R, = H, R2 = CH3 
11 R1 = CH31R2 = H 

12 R,, R2 = H 

13 Ri = H, R2 = CH3 

14 R, = H, R2 = CH3 

methallyltributyltin AlCl3 

allyltributyltin AlCl3 
Jra/w-crotyltributyltin AlCl3 
allyltributyltin AlCl3 

allyltrimetylsilane AlCl3 

allyltrimethylsilane AlCl3 

methallyltributyltin AlCl3 

5 min/-78 

5 min/0 
1 h/25 
1 h/25 

24 h/25 

60 h/25 

5 min/-78 

R,, R3 = H; R2 = Me; R4 = n-Bu 
R, = H; R2, R3 = Me; R4 = n-Bu 
R, = Me, R2, R3 = H; R4 = n-Bu 

o 

10 

66 (91) 
51 (87) 
41 (58) 
31 (41) 

12 (77) 

11 (57) 

-The yields reflect compounds pure by TLC, 1H NMR, and 13C NMR analysis. The yields in parentheses are based on recovered starting 
material. * For a procedure see ref 5. 
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Scheme I 

SnBu3 

AICL J) 
Fe(CO)2Cp , Q J e ( C O ) 2 C p 

OAICI3 

2 

/ ' V - S n B u 3 

, L Fe(CO)2Cp 

3 4 ..SnBu3 

\ ? 
%^, Fe(CO)2Cp 

^0AICI3 

5B 

-AICU 

Fe(CO)2Cp 
SnBu3 

Fe(CO)2Cp 

the analagous reaction with enones.14 Interestingly, under 
identical conditions allyltrimethylsilane reacts with acryloyl 
complex 1 to give the 5-hexenoyl complex 4 exclusively. We 
believe this difference reflects lessened hyperconjugative stabi-
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lization of the /3-carbocation 5 in the silicon case.9 When 
methallyltributyltin reacts with 1 and AlCl3, the only product 
isolated is the open-chain compound (entries 8, 14). Here, the 
intermediate carbocation 5B is sterically destabilized and rapid 
destannylation occurs to give the open-chain compound. Alter­
natively, the intermediate carbocation more resembles 5A (tertiary 
carbocation) and since in 5A C-5 is not electrophilic, cyclization 
does not occur. 

We are currently investigating this process with regard to 
mechanistic generalities and attempting to develop its synthetic 
potential for stereoselective five-membered ring construction. 
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The question of the intermediacy of monomeric metaphosphate 
in displacement reactions of phosphate monoesters has remained 
a controversial issue, despite efforts from many laboratories.1 

Several attempts have been made recently to obtain stereochemical 
information consistent with a dissociative pathway for the alco­
holysis of [16O5

170,180]phosphate esters,2"6 the most persuasive 
of which have demonstrated partial racemization at phosphorus 
in such displacement reactions in aprotic media. We now report 
the complete racemization at phosphorus in a simple phospho 
transfer reaction in a protic solvent, thus providing evidence for 
the intermediacy of a symmetrically solvated metaphosphate 
species in the solution reaction of a phosphate monoester. 
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